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Fluid Bounding Effect on Natural Frequencies of Fluid-Coupled 
Circular Plates 
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This study deals with the free vibration of two identical circular plates coupled with a bound- 

ed or unbounded fluid. An analytical method based on the finite Fourier-Bessel series expansion 

and Rayleigh-Ritz method is suggested. The proposed method is verified by the finite element 

analysis using commercial program with a good accuracy. The ~ase of bounded or unbounded 

fluid is studied for the effect on the vibration characteristics of  two circular plates. Also, the 

effect of  gap between the plates on the fluid-coupled natural frequencies is investigated. 
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1. Introduction 

It is generally known that the natural frequen- 

cies of structures in contact with fluid, or immers- 

ed in fluid, decrease significantly compared to the 

natural frequencies in a vacuum. This problem is 

referred to as the fluid-structure interaction pro- 

blem. For this problem, many investigators have 

obtained some approximate solutions that have 

been used to predict the changes in the natural 

frequencies of a structure in fluid. In recent liter- 

ature, there has been renewed interest in the 

problem of plates vibrating in contact with water. 

This is stimulated by new technical applications 

and also by the availability of powerful numerical 

tools based on the finite element and boundary 

element methods which make numerical solutions 

of fluid-structure interaction problems possible. 
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However, the use of the finite element method or 

the boundary element method requires enormous 

amounts of  time for modeling and computation. 

Circular plates vibrating in contact with fluid 

have recently been studied. Kwak (1991) and 

Kwak and Kim (1991) studied the free vibrations 

of circular plates in contact with water on one 

side, while the free vibrations of annular plates in 

contact with water on one side were investigated 

by Amabili et al. (1996). They considered the 

unbounded fluid domain and also introduced the 

non-dimensionalized added virtual mass incre- 

mental factors in order to estimate the fluid effect 

on the individual natural frequency of  the fluid- 

structure system. Chiba (1994) obtained exact so- 

lutions for the circular elastic bottom plate in a 

cylindrical rigid tank filled with fluid. The circu- 

lar elastic bottom plate was supported by an 

elastic foundation and the free surface of the fluid 

was considered. Bauer (1995) analytically deter- 

mined the coupled natural frequencies of an ideal 

fluid in a circular cylindrical container where the 

free fluid surface was covered by a flexible mem- 

brane cover or elastic plate. A paper by De Santo 

(1981) dealt with an experimental investigation 
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of perforated circular plates submerged in water. 

Montero de Espinosa et al. (1984) studied the 

vibration of plates submerged in water mainly to 

the lower modes by the approximate analytical 

method and experiments. Hagedorn (1994) dealt 

with the theoretical free vibrations of an infinite 

elastic plate in the presence of water. 

This study is concerned with the coupling effect 

of contacting fluid on the free vibration charac- 

teristics of circular plates coupled with incom- 

pressible and frictionless fluid. The natural fre- 

quencies of the in-phase and out-of-phase vibra- 

tion modes of the fluid-coupled system could be 

obtained by theoretical calculations and the finite 

element method. The normalized natural frequen- 

cies are obtained in order to estimate the relative 

added mass effect of fluid on each vibration mode 

of the plates. The case of bounded or unbounded 

fluid is studied for the effect on the vibration 

characteristics of two circular plates. Also, the 

effect of contained fluid between plates on the 

frequencies is investigated by comparing frequen- 

cies according to the distance between plates. 

2. Theoretical Development 

2.1 Formulation 

Figure 1 represents two identical circular plates 

coupled with fluid, where R, h and H represent 

the radius and thickness of the plate, and distance 

between two plates respectively. The following 

assumptions are made for the theoretical devel- 

opment : 

(a) the fluid motion is so small that it is con- 

sidered to be linear, 

(b) the fluid motion is incompressible, inviscid 

and irrotational, 

(c) the material of plates is linearly elastic, 

homogeneous and isotropic. 

The equation of motion for transverse dis- 

placement, w~, of these plates which are in contact 

with fluid is: 

D~7~w~+phw~,t~ =p~, j =  1, 2 (I) 

where D=Eh3/12(I-/ . f l)  is the flexural rigidity 

of the plates: p, ~t, p~ and E are density, Pois- 

son's ratio, hydrodynamic pressure on the plates 

and Young's modulus of the plates, respectively. 

The upper circular plate is referred to with a 

subscript "1" while the lower circular plate is 

denoted by a subscript "2." The solution of Eq. 

(I) takes the following form of combinations 

for plate deformation with respect to polar coor- 

dinates (r, 0): 

M 

wt(r, O. t)=cos(nO) ~q~W~(r)exp(icot)  (2a) 
~=1 

M 

w2(r, O, t)=cos(n0)Y],qmW~m~(r)exp(ia)t) (2b) 
rn=l  

where qm and Pm are unknown coefficients and 

n and m are the numbers of the nodal diameters 

and circles of the plates, respectively. For the 

plate with clamped boundary conditions, the dis- 

placement along the edge of the plates must be 

zero and therefore dynamic displacement of Eq. 

(2) will be reduced to:  

Wnno(; v) =Jn(Anmr) 
ln(A.~r) (3) 

--Jn(,~nmR) In(/]nmR) ' j = l ,  2 

= 2R = 300 

l~I Plate/ 
H (IYom plate center to center) 
= 10, 20, 30, 40, 50, 60 
Unit=ram 

Fig. 1 Two plates coupled with fluid 

where ,~nm is the frequency parameter for the 

disks, which is also determined by the boundary 

conditions and is related to the circular frequency 

co. Jn and I~ are the Bessel function and the 

modified Bessel function of the first kind, respec- 

tively. For the fixed boundary condition, the 

eigenvalues ~nmm for the plate in a vacuum can be 

obtained from the zero slope and zero moment 

boundary conditions as follows (Bauer, 1995): 

Jn (An,,R) I,+1 (,']nmR) +Jn+t (An,,R) In (AnmR) =0  (4) 
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2.2 Velocity potential 
Let's consider the fluid region between the cir- 

cular plates. The three-dimensional oscillatory 
fluid flow in the cylindrical coordinates can be 
described by the velocity potential. The facing 
side of the plates is in contact with inviscid and 
incompressible fluid. The fluid movement due 
to the plate vibration is described by the spatial 
velocity potential that satisfies the equation : 

V2~(x, r, O, t)=0 (5) 

It is possible to separate the function ~ with res- 
pect to r by observing that in the radial direction 
the vessel which supports the edges of the plates 
are assumed to be rigid, as in the case of the com- 
pletely contact circular plate. Thus : 

6O(x, r ,  0, t )= iw~b(r ,  0, x)exp(iwt) (6) 

Substituting Eq. (6) into Eq. (5) generates the 

general solution of Eq. (5) as : 

~(r, O, x ) - ~ ,  --s=[Jn(flnsr){ Enssinh(/3n~x) (7) 

+ Fns cosh (fln~) } ] cos ( n 0) 

For the bounded fluid, the boundary condition 
along the cylindrical vessel wall assures the zero 
fluid velocity given by:  

O@/Orlr=R =0 (8) 

Insertion of Eq. (7) into Eq. (8) determines fins 
for every n and s by the equation : 

Jn' (flnsR) = 0  (9) 

On the other hand, the coefficients fins for the 
unbounded fluid can be determined by the fol- 
lowing transcendental equation with respect to 
every n and s :  

Jn (~ .sR)  = 0  ( ~ 0) 

where Eq. (10) satisfies the fluid boundary con- 
dition of the free surface, which means zero ve- 
locity potential at r = R :  

~b(r, 0, x ) = 0  at r = R  (11) 

When we consider the symmetry of the fluid velo- 
cities for the in-phase and out-of-phase vibration 
modes, the velocity potential will require the 
following symmetric conditions: 

for the in-phase mode, 

O(~(r, O, --x)/Ox=O~(r, O, x)/Ox 12) 

and for the out-of-phase mode, 

OqS(r, O, x) /OXlx=o:O 13) 

Application of Eqs. (12) and (13) gives simple 
reduced forms of Eq. (7): 
for the in-phase mode, 

~b(r, 0, x)=cos(n0)~,E.An(fl.~r)sinh(fi.~x) 
s=l (14) 

=cos(n0) ~dr, x) 

and fbr the out-of-phase mode, 

~b(r, 0, x)=cos(n0)s=afP'F"sJn(l~nsr)cosh(fl'rsx) (15) 

=cos(n0) ~2(r. x) 

2.3 Method of solution 
In order to determine the coefficients Ens and 

Fns of fluid motion, the compatibility conditions 
at the interface of the upper and lower fluid 
domains contacting along the plate surfaces are 
used. Compatibility conditions at the fluid inter- 
face with the plates yield 

Wl = -- O•/cqX Ix=HIz (16) 

w 2 =  - a ~ / &  Ix=-.,2 (17) 

Substitution of Eqs. (2), (3), (14) and (15) into 
Eqs. (16) and (17) gives: 
For the in-phase mode, 

In (Anmr) 
M~=I qm[Jn(Anmr) -Jn(/ln=R) ln(/lnmR) ] 

18) 

= -s~lEnst~.An ( a.~r ) cosh ( ~n~ ~-  ) 

and for the out-of-phase mode, 

I, (A,=r) 
u~=l qm[J.(,~.mr) -Jn(A.mR) I.(A.mR) ] 

19) 

Expanding J,(Anmr) and In(An,,r) of Eqs. 18) 
and (19) into Bessel-Fourier series of the form 
(Hagedorn, 1994 ; Sneddon, 1951) will give : 
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Jn(/lnmr) =- ~,anmsJn(flnsr) (20a) 
8=1 

o o  

In (Anmr) = ~, bnmsJn (a.sr)  (20b) 
8=1 

The Bessel-Fourier coefficients anms and bnms 
can be written as Eq. (21a-d) for the bounded 

fluid case, where the coefficients fins must satisfy 
Eq. (9). 

For  n = 0 ,  

--2 (.4omR) J, (/to,,,R) 
(21a) 

ao.,8- [ (l~osR) Z_ (Ao.,R) Z] jo(~osR) 

2 (Ao.R) 1, (Ao~R) 
bo~s = [(flosR)Z+(AomR)2]jo(13o~R) (21b) 

and for n > 0  

2 (/~nsR) z (/t,,,.R) Jn' (/lnn~R) 
a ~ -  [ (fl~R)2_n2][ (~d?)z_(A.~R)2]j.(fl~R ) (21c) 

2 (/~nsR)2 (/lr~)In' (.t..R) (21 b) 
b..~- [ (2.8R),_ d ] [(Z~)~+ ( ,~ .~ ) , ] j . (~ )  

On the other hand, for the unbounded fluid case, 

the Bessel-Fourier coefficients anms and bnms can 

be written as Eq. (22a, b), where the coefficients 

fins must satisfy Eq. (10) instead of Eq. (9). 

2 (flnsR) Jn (AnmR) 
anms-- [ ( /?.~R)z_ (An~R)2jn+l (13.sR) ] (22a) 

2 (l?nsR) I. (An~R) 
b,,~,~- [ (fln~R)Z - (A.mR)Zj.+x(/3nsR) ] (22b) 

Therefore, the velocity potential of the fluid can 

be written in terms of  unknown constants qra 
instead of the unknown coefficients En8 or F.8. 
For  the in-phase modes, 

M 

¢(r, O, x)-~q.~...,J,l~.,r)smh~B,,x)cos(nOI (23a) 

and for the out-of-phase modes, 

M 

¢(r, O, x)=~tqm~i~..sJn(/~.sr)cosh(/3.sx)cos(nO) (23b) 

where 3nm8 is a derived coefficient : 

[ a . . . - -  bn,.sJ. (AnmR) ~In (AnmR) ] 
i..o~nra8 

fins cosh (flnsH/2) (24a) 
for the in-phase modes 

[ anms -- b,,msJn (/tn,nR) ~In (/tn,nR) ] 
~ m 8  

fins sinh(flnsH/2) (24b) 
for the out-of-phase  modes 

In order to perform numerical calculations for 

each fixed n value, a sufficiently large finite en- 

ough number M of terms must be considered in 

all the previous sums of the expanding term, m. 

For this purpose, a vector q of the unknown 

parameters is introduced as:  

q = {  q, q2 qs ... . . .  q~, }r (25) 

Now, it is necessary to know the reference kinetic 

energies of the plates and containing fluid in 

order to calculate the coupled natural frequen- 

cies of the circular plates in contact with fluid. 

The reference kinetic energy of the fluid can be 

evaluated as : 

1 R 

where /c0=2z for n = 0  and /c0=z for n > 0 .  In- 

sertion of  Eqs. (3) and (23a, b) into Eq. (26) 

gives the reference kinetic energy of the fluid : 

TF = poKoqrGq (27) 

where Po is the mass density of the fluid, and 

the M × M  symmetric matrix G for the fixed n 

is given by Eqs. (20a, b),  (21a-d) and (26) as 

follows and they are called added virtual mass 

incremental (AVMI) matrix (Kwak and Kim, 

1991 ; Chiba, 1994). 

For  the fixed boundary condition of the plates 

and bounded fluid case, 

G~ = -  ~ 8R3(fl'~R) AMIk,B.~ 
s=l [(fl~sR)2-n 2] . i, k= l ,  2, ..., M (28) 

with 

(Anig) 3Jn" (AniR) 
A ~ =  (29a) 

[ (fineR)'- (A.,R)'] 
(AnkR) 3Jn' (An~R) 

A s s -  (29b) [ (I~.R) 4__ (A,,kR)'] 

f l"s=tanh ( f lns~-) ' (30a) 

for the in-phase mode 

f lns=c° th  (fins 2H~) ' (30b) 

for the out-of-phase mode 
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When the plates have a fixed boundary condition 

and the fluid is unbounded, the AVMI matrix will 

be reduced to 

G~ = ~. 8R3(/3"'R) (A"~R)~(LkR) =]"(A"~R) ].(LkR) 
s=~ [(A,~R)4-(3,,R)'I[(A,~R)'-(B,R)'] 3"s'(31) 

i ,k=l, 2,...,M 

The sum on s in Eqs. (28) and (31) must be stop- 

ped for numerical computation, at an integer 

value large enough to give the required accuracy. 

For the fluid bounded case with n = 0  and s = 1, 

the first term of Go, has a zero denominator and 

a zero numerator at the same time for the in- 

phase modes because of flns=O. The limit of the 

first term of G~ must be determined as fins ap- 

proaches zero. In consequence of formulation, the 

first term of G~ for the in-phase modes with n = 

0 will be replaced with 4HRZJa(A0~R)JI(A0kR)/ 

[(A0iR) (Ao~R)] instead of the first term of Eq. 

(28). On the other hand, For the fluid unbounded 

case with n = 0  and s = 1, the first term of G~ for 

the out-of-phase modes must be replaced with 

8R4J1 (/]okR) Jo (Jo;R) / [ (Jo~R) z (Jo,,R) H] instead 

of the first term of Eq. (31). 

The reference kinetic energy of the two circular 

plates, as obtained using the orthogonality of the 

mode shapes, is presented : 

Te = ph xo fo R Wx 2 r d r  (32) 

Insertion of Eq. (2) into Eq. (32) gives the kine- 

tic energy of the two circular plates as: 

R l~wz{I 0wl. 1 ~Wl/ V,=KoD[ ([~w,l~-2(l-.) 17 \r ~--7~r/ 
(36) 

l aw~ 2 

As the first term [V2Wl] 2 of Eq. (36) is identical 

to A~iwf and the other terms of Eq. (36) are 

negligible comparing with the first term, the 

maximum potential energy may be approximated 

by 

Va..~ x0Dqrpq (37) 

where P is the M × M diagonal matrix given by 

( A , .R  ) ' 
P~ = R ~  { J, (A,,R) }z8~, (38) 

The correspondence between the reference to- 

tal kinetic energy of each mode multiplied by its 

square circular frequency and the maximum po- 

tential energy of the same node are used. In order 

to find the coupled natural frequencies and mode 

shpaes of the two plates in contact with fluid, 

the Rayleigh quotient for the plates vibration 

coupled with ideal fluid is used. Minimizing 

Rayleigh quotient V a / ( T a +  Te) with respect 

to the unknown parameters qm, the non-dimen- 

sional Galerkin equation can be obtained : 

D P q - w Z ( p h Z + p o G ) q = {  0 } (39) 

Eq. (39) gives an eigenvalue problem and the 

coupled natural frequency w can be calculated. 

3. Analysis 

Ta = phxoqrZq (33) 

where Z is M × M  matrix given as 

Z .  = 8~ fo R rW~,l W.k ldr ,  
(34) 

6'~ : Kronecker delta 

When Eq. (3) is inserted into Eq. (34) and the 

integration is carried out, matrix Z is simply 
represented as : 

Z~ =R2{ J,, (A~,R) }28~, (35) 

The maximum potential energy of the two plates 

can be computed as: 

3.1 Theoretical analysis 
On the basis of the preceding analysis, the de- 

terminant of the left side in Eq. (39) is numeric- 

ally solved using MathCAD for the clamped edge 

condition in order to find the coupled natural 

frequencies of two circular plates coupled with 

fluid. In order to check the validity and accuracy 

of the results from the theoretical study, finite 

element analyses are also performed and frequen- 

cy comparisons between them are carried out for 

the fluid-coupled system. 

The circular plates are made of aluminum 

having a mean radius of 150 mm and a thickness 

of 3 ram. Also the distance between two plates 
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Table 1 Dimensions and material properties 

Unit Plate Fluid 

Young's modulus Pa 69E9 

Poisson's ratio 0.3 

Density kg/m s 2700 1000 

Sound speed m/sec 1483 

Bulk modulus of elasticity Pa 2.2E9 

Thickness mm 3 

Diameter mm 300 

are varied from 10 mm to 60 mm to see the effect 

of the quantity of contained fluid on the modal 

characteristics of the plates (Fig. 1). The phy- 

sical properties of the material are as follows: 

Young's modulus=69.0GPa,  Poisson's ra t io= 

0.3, and mass density=2700 kg/m 3. Water is used 

as the contained fluid, having a density of 1000 

kg/m s. The sound speed in water is 1483 m/s, 

which is equivalent to the bulk modulus of elas- 

ticity of 2.2 GPa (Table 1). The clamped edge 

condition of the plates is considered among the 

possible boundary conditions. 

The frequency equations derived in the prece- 

ding sections involve an infinite series of alge- 

braic terms. Before exploring the analytical meth- 

od to obtain the natural frequencies of the fluid- 

coupled plates, it is necessary to conduct conver- 

gence studies and establish the number of terms 

required in the series expansions involved. In the 

numerical calculation, the Bessel-Fourier expan- 

sion term s is set to 200 and the expanding term 

m (or M) for the admissible function is set to 40, 

which gives an exact enough solution by conver- 

gence. In general, the solution approaches the 

exact frequency from above as the number of 

terms included in the series Eqs. (27), (33) and 

(37) increases, which may increase the calcula- 

tion time significantly. 

3.2 Finite element analysis 
Finite element analyses using a commercial 

computer code ANSYS 6.1 (ANSYS 2001) are 

performed to verify the analytical results for the 

theoretical study. The results from finite element 

method are used as the baseline data. Three- 

O 0 
~;!!!!!!!!!?'."! ! ! ! ! ~  

Fig. 2 Finite element model of two plates coupled 

with fluid 

dimensional model is constructed for the finite 

element analysis. The fluid region is divided into 

a number of 3-dimensional contained fluid ele- 

ments (FLUID80) with eight nodes having three 

degrees of freedom at each node. The fluid ele- 

ment FLUID80 is particularly well suited for 

calculating hydrostatic pressures and fluid/solid 

interactions. The circular plates are modeled as 

elastic shell elements (SHELL63) with four nodes. 

The model for H = 5 0  mm has 7200 fluid elements 

and 2400 shell elements as shown in Fig. 2. 

The boundary conditions at the plate perimeter 

nodes are fixed. The fluid movement at r = R  is 

considered to be constrained in the radial direc- 

tion for the bounded fluid case but no constraints 

are imposed for the unbounded fluid case. The 

vertical velocities of the fluid element nodes ad- 

jacent to each surface of the wetted circular plates 

coincide to those of plates so that the model can 

simulate Eqs. (16) and (17). 

The Block Lanczos method is used for the 

eigenvalue and eigenvector extractions to calcu- 

late 400 frequencies, which are composed of in- 

phase and out-of-phase modes. 

4. R e s u l t s  and D i s c u s s i o n  

Mode shapes ( m ' = l )  of in-phase and out-of  

phase from finite element analysis for fixed plates 

with unbounded fluid of H = 5 0  mm are shown 

in Fig. 3. For identical modes in the radial di- 

rection, in-phase and out-of-phase modes appear 
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T a b l e  2 Comparison of in-phase mode frequencies between FEM and theory for plates coupled with bounded 

fluid 

n 
FEM 

0 171 

1 363 

2 609 

3 914 

Theory 

168 

358 

605 

913 

1285 4 1279 

5 1706 1724 

6 2198 2233 

Disc. (%) 

1.8 

1.4 

0.7 

0.1 

--0.5 

--1.1 

- - 1 . 6  

T a b l e  3 Comparison of out-of-phase mode 

bounded fluid 

FEM 

700 

1102 

1574 

2121 

2741 

3432 

4197 

D'/' = 2 

Theory 

695 

1102 

1586 

2151 

2798 

3527 

4338 

Disc.(%) FEM 

0.7 1666 

0.0 2310 

--0.8 3034 

- - 1 . 4  3838 

--2.1 4720 

--2.8 5677 

--3.4 6707 

m ' = 3  

Theory 

1678 

2343 

3099 

3946 

4884 

5913 

] 7030 

frequencies between FEM and theory for plates 

Disc. (%) 

--0.7 

- -  1.4 

--2.1 

--2.8 

--3.5 

--4.2 

- - 4 . 8  

coupled with 

n 
FEM 

~ / ' =  1 

Theory 

0 - -  - -  

1 150 154 

2 371 381 

3 674 692 

4 1055 1081 

5 1507 1544 
i 

6 I 2027 2079 

m ' = 2  

Disc.(%) FEM Theory 

- -  405 391 

--2.7 791 813 

--2.7 1282 1320 

--2.7 1862 1920 

--2.5 2519 2606 

--2.5 3249 3371 

--2.6 4050 4215 

Disc. (%) FEM 

3.5 1337 

--2.8 1995 

--3.0 2750 

--3.1 3591 

--3.5 4511 

--3.8 5503 

--4.1 6562 

W / ' = 3  

I Theory 

1385 

2061 

2853 

3742 

4721 

5785 

6931 

Disc. (%) 

--3.6 

--3.3 

--3.7 

--4.2 

--4.7 

--5.1 

--5.6 

Table 4 Comparison of in-phase mode frequencies between FEM and theory for plates coupled with 

unbounded fluid 

n 
FEM 

171 

I 363 

2 611 

3 918 

4 1286 

5 1718 

2214 

Z/" / '~  1 
i 

Theory Disc.(%) 

168 1.8 

359 1.1 

608 0.5 

919 --0.1 

1295 --0.7 

1739 --1.2 

2253 --1.8 

T a b l e  5 Comparison of out-of-phase mode 
unbounded fluid 

FEM 

702 

1109 

1588 

2142 

2770 

3470 

4243 

D ' / ' =  2 

Theory 

699 

1112 

1603 

2177 

2832 

3569 

4388 

Disc.(%) FEM 

0.4 1682 

--0.3 2337 

--0.9 3074 

- - 1 . 6  3891 

--2.2 4786 

--2.9 5756 

--3.4 6798 

Theory Disc.(%) 

1698 --1.0 

2376 --1.7 

3144 --2.3 

4004 --2.9 

I 4954 --3.5 

5992 --4.1 

7117 --4.5 

frequencies between FEM and theory for plates coupled with 

n 
FEM 

0 71 

1 221 

2 450 

3 756 

4 1136 

5 1584 

6 2101 

m ' =  1 

Theory 

73 

226 

460 

772 

1160 

1620 

2151 

Disc. (%) FEM 

--2.8 534 

--2,3 944 

--2.2 1442 

--2.1 2018 

--2.1 2669 

--2.3 3390 

--2.4 4181 

~ / ' = 2  

Theory 

545 

964 

1473 

2067 

2742 

3498 

i 4333 

Disc.(%) FEM 

--2.1 

--3.1 

1536 

2217 

--2.1 2979 

--2.4 3818 

--2.7 4732 

-- 3.2 5716 

--3.6 6769 

m ' ~ 3  

Theory 

1568 

2268 

3059 

3938 

4903 

5954 

7089 

Disc. (%) 

--2.1 

--2.3 

--2.7 

--3.1 

--3.6 

--4.2 

--4.7 
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alternately and out-of  phase modes are always 

shown ahead of in-phase modes. Fig. 4 shows the 

typical mode shapes of radial modes. 

The frequency comparisons between analytical 

solution developed here and finite element meth- 

od are shown in Tables 2 through 5 for H = 5 0  

mm. The symbol m' in the tables represents the 

number of nodal circles of the wet mode and the 

symbol n means the number of nodal diameter, 

The discrepancy in the tables is defined by: 

Discrepancy (%) 

= frequency by FEM-theoretical frequency × 100 (40) 

frequency by FEM 

As shown in Tables 2 through 5, the largest 

discrepancy between the theoretical and finite 

element analysis results for fixed plates is 5.6~o 

for the out-of-phase mode m ' = 3  and n = 6  of 

bounded fluid case. Therefore the theoretical res- 

ults agree well with finite element analysis results, 

verifying the validity of the analytical method 

developed. Frequencies from finite element an- 

alysis are generally lower than those of theory due 

to the fact that the boundary conditions of plates 

are not simulated to be clamped perfectly. 

Mode shapes of n = 0  are shown in Fig. 5, 

where the out-of-phase mode of unbounded fluid 

case for m "~-I and n= O  is shown but it does 

not appear in the bounded fluid case due to the 

restriction of the fluid volume conservation (Fig. 

6). 

Frequencies of plates coupled with unbounded 

fluid for the in-phase and out-of-phase modes 

are represented in Figs. 7 and 8 with respect to 

the distance between two plates. In all cases, as 

the number of nodal circles increases, frequency 

r I/ .y ----., , - ; --~".-~ 

I t k t :  :li i ,,, , , , < . . : j / /  

! 

i - - , .  x k _ 

' ,  , , . .  , , 
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Comparison of (1, O) mode shapes between bounded and unbounded cases 
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increases, which were not shown in cylindrical using the normalized frequency defined as : 

shells (Jhung et al., 2002). Also, the frequencies 
Frequency with fluid 

of in-phase modes are always higher than those of Normalized frequency= (41) 
Frequency without fluid 

corresponding out-of-phase modes and as mode 

number and the distance between two plates The normalized natural frequencies for the in- 

decrease the difference between in-phase and out-  phase and out-of-phase modes have values be- 

of-phase modes increases, tween one and zero due to the added mass effect 

The effect of fluid on the frequencies of two of fluid. Figs. 9 and 10 show the normalized 

circular plates wetted with fluid can be assessed natural frequencies for in-phase and out-of-  

I0000  
w/Un lxamded F1~id, ~7 

H - 1 0  I~m 0 V ~' 

8 0 0 0 j  ~ 0 v h. 

- f ° 
6000 0 V ~, o 

0 V 0 

~ooo v ~ o 

& O O [ o 
o o 

0 I 2 3 4 5 6 7 8 9 I0  

Number of  Nodal Diameter (n) 

10000 

811110 

2000 

8 ~  

V 
w/Unbouadcd [quid.~..ohau: 

H - 5 0  mm v 

0 
v 

0 v 

2000 

w/Un~.d Fluid, i n c a s e  v 
H - 3 0  mat 0 ~, ,¢, 

O 
'¢' o 

o ~7 o 

o 
'¢' A 

o o 
o o 

I~ i D I I I t t I I I I 

0 I 2 3 4 5 6 7 8 9 10 

Number of  Nodal Diameter (n) 

& 

A 

o 
A A 

0 V A 0 ' ~  0 ~ 0 
# J  £ 

v £ o ~ "  4 0 0 0 -  v & o 

~7 ~. o o . v A o o 

A o o ~ o {3 
0 2000 - ~ o o 

A o o o 
o o o o 

o o o o 

o ~ , . , , . , , , , o Y , , , , , , 

0 | 2 3 4 5 6 7 8 9 tO 0 ! 2 3 4 5 6 7 8 9 I0  

Number of Nodal Diameter (n) Number of Nodal Diameter (n) 

Fig.  7 In-phase mode frequencies of two plates coupled with fluid 

112O00 

w/Unl~amded FlukL~m-pbase ,e, 
H - 2 0  man v 

8000 ~ o 
v 

O 
v 

g 
o o 

& o o 
2000 z~ o n 

o o 
o o 

0 0 DI I I I t i i I i i 

0 I 2 3 4 5 6 7 8 9 I0  

Number of Nodal Diameter (n) 

10000 v 

w/Unboumded Fluid~n-phas¢ 
v 

H~40 mm v 

8000 A 
O 

v 

g ° 

O 

4000 V ~. 0 

o 
o o 

2000 ~ o u o 

o o 
o o 

i~ ° I I I I i I i i i / 

0 I 2 3 4 5 6 7 s 9 Io 

Number of  N ~ a l  Diameter (n) 

w/Unhatmdcd Fluid, in-phase 
H-,60 mm 0 

~7 
8000  

O '~' ,¢ 

6000 O v o 



Fluid Bounding Effect on Natural Frequencies of  Fluid- Coupled Circular Plates 1309 

phase modes, respectively. The fluid affects the 

out-of-phase mode more significantly than the 

in-phase mode. Especially the in-phase mode has 

the same effect irrespective of the number of nodal 

circles and nodal diameters but out-of-phase 

mode has more effect with the smaller number of 

nodal circles and nodal diameters. As the number 

of nodal circles or diameters of the plates in- 

creases, the normalized natural frequencies in- 

crease by the gradual reduction of the relative 

added mass effect. Therefore, an increase of nodal 

lines or nodal circles causes an increase in the 

normalized natural frequencies for both in-phase 

and out-of-phase modes. 

Figures 11 and 12 show fluid gap effect on the 

natural frequencies of in-phase and o u t - o f  phase 

modes. As we compare the natural frequencies 

in Figs. I1 and 12, the decrease of the distance, 
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H, between the plates significantly affects on the of  fluid mass itself. This trend is maintained for 

coupled natural  frequencies. The  decrease of  dis- all over the mode numbers. 

tance between the plates will enlarge the by- The fluid bounding  effects are shown in Figs. 

draulic coupl ing effects for the ou t -o f -phase  13 and 14. The natural  frequencies of  the un- 

modes. As the distance decreases, the natural  bounded fluid case are higher than those of  the 

frequency of  the ou t -o f -phase  mode decreases by bounded fluid case for all ou t -o f -phase  modes 

the hydrodynamic  coupl ing effect. However  for because the fluid is free to move radially and the 

the same situation, the natural  frequency for the added mass of  the mass is reduced and eventually 

in-phase  mode increases by reducing the amount  increase the natural  frequency of  the wet modes. 
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Howe ver  the i n - p h a s e  mode  natural frequencies  

o f  the u n b o u n d e d  fluid case are a lmost  the same 

as those o f  the bounded  fluid case because there is 

no fluid movement  between two plates and the 

same amount  o f  added mass is a lways  conserved 

for the in -phase  modes.  

N o r m a l i z e d  frequency compar i sons  between 

bounded  and unbounded  fluid cases are s h o w n  

in Figs. 15 and 16, which  s h o w  that in -phase  mo-  

des have the same fluid effect irrespective o f  the 

b o u n d e d  or u n b o u n d e d  fluid cases but o u t - o f -  

phase modes  for b o u n d e d  fluid case are more 

affected than u n b o u n d e d  fluid case. This  can be 

expected from the fact that bounded  fluid case has 

smaller frequencies  than unbounded  fluid case for 

o u t - o f - p h a s e  modes .  

The  vibrat ion characterist ics  summarized  in 

this s tudy can be used for the operator to take 
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some actions to prevent damages resulting from 

the abnormal  vibrat ion which can be predicted 

from this study. 

5. Conclusions 

An analytical method to estimate the coupled 
frequencies of the circular plates coupled with 
fluid is developed using the finite Fourier-Bessel 
series expansion and Rayleigh-Ritz method. To 
verify the validity of the analytical method de- 
veloped, finite element method is used and the 
frequency comparisons between them are found 
to be in good agreement. The effect of the fluid 
bounding and distance between plates on the 
frequencies is investigated generating following 

conclusions ; 

(1) The ou t -o f -phase  and in-phase  modes are 

observed alternately when the number  of  nodal  

circles increases for the fixed nodal  diameter.  

(2) The effect of  the contained fluid on the 

plate frequencies is found to be more severe in 

out of -phase  modes than in-phase  modes. Espe- 

cially as number  of  diametrical  and circular  

modes decrease, the effect is more significant. 

(3) The decrease of  distance between the plates 

results in an increase in the in -phase  modes and 

a decrease in the out-of--phase modes. An in- 

crease in the number  of  diametrical  and circular 

modes shows a monoton ic  increase in the nor- 

malized natural frequencies. 

(4) The frequencies of  unbounded  fluid case 



Fluid Bounding Effect on Natural Frequencies of Fluid- Coupled Circular Plates 1315 

are almost the same as those of bounded case for 

the in-phase modes. But the frequencies of un- 

bounded fluid case are higher than those of 

bounded case for the out-of-phase modes. 

(5) The fluid contained between two plates 

generates the same trend irrespective of the bo- 

unded or unbounded fluid cases. 
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